Optimization of the Number and Location of Tsunami Stations for the Tsunami Warning in South China Sea

Chao An¹, Philip L.-F. Liu¹, Matthew Pritchard²

1: School of Civil and Environmental Engineering, Cornell University 2: Earth and Atmospheric Sciences, Cornell University

Methodology

- Inversions of tsunami data using every possible combination of tsunami stations:
 - 2011 Tohoku event: 28 tsunami stations
 - 1 station: nchoosek(28, 1) = 28 possibilities
 - 2 stations: nchoosek(28, 2) = 378 possibilities
 - **–**
 - 28 stations: use all stations
- Judging criteria: the inverse residue

$$\sum_{m=1}^{28} \left[\frac{\text{Prediction} - \text{Data}}{\text{max}(\text{Data})} \right]^2$$

1 station: 28 possibilities

3 stations: 3000 possibilities (upper bound)

2 stations: 378 possibilities

4 stations: 3000 possibilities (upper bound)

Results for 2011 Tohoku

Minor residue drop for the rest.

Residue increases due to 3000 maximum inversions – failure to capture the least residue

Almost zero residue drop for the rest.

1 Station, Near- or Far-Field?

2~4 buoys are sufficient for inversion of tsunami to constrain earthquake source if they are optimally located.

Some near-field stations with short and high-amplitude leading waves give bad predictions.

Fault Geometry

(Hsu et al. 2012)

Results for the Manila Trench

Results for the Manila Trench

Averaged Residue over Three Faults:

Near- or Far-Field?

Buoys of HX

HXs for F1

Conclusions

- 2~4 buoys are sufficient for inversion of tsunami to constrain earthquake source if they are optimally located; adding more data does not significantly improve the results.
- Some near-field stations with short and highamplitude leading waves tend to exaggerate model error, and thus give bad predictions.
- HX buoys have small residue in the inversions; the location can be further optimized.

Thank you!

HXs for F2

HXs for F3

