Examining the focal mechanism of the 2009 Samoa Earthquakes by means of Tsunami Observation and Simulation

Emmy T.-Y. Chang ¹
Benjamin F. Chao ²
Tso-Ren. Wu ³
Pei-Yu. Lai¹

1 Institute of Oceanography, NTU, Taipei, Taiwan 2 Institute of Earth Sciences, AS, Taipei, Taiwan

3 Graduate Institute of Hydrological and Oceanic Sciences, NCU, Jhongli, Taiwan

2009 Samoa Earthquake, a doublet or even a triplet

Quake triggers tsunami

A deadly tsunami caused by a powerful earthquake in the Pacific hit the islands of Samoa and American Samoa worst.

Samoa

- Area 2,831 sq. km (1,093 sq. mi.)
- Population 220,000
- Independence 1962

Tsunami waves to 4-6 m (15-20 ft.) hig

American Samoa

- Area 200 sq. km (7)
- Population 65,630
- Unincorporated territor of the U.S. since 1900

© 2009 MCT

Source: CIA World Factbook, USGS Graphic: Junie Bro-Jorgensen, Jutta Scheibe

Tonga subduction zone

- large convergent rate
- few large interpolate earthquakes

USGS preliminary solution: an outer-rise normal fault Mw 8.1

SAMOA ISLANDS REGION

Mw 8.0 **USGS** Centroid Moment Tensor Solution

> Date: 29 SEP 2009 Time: 17:48:10.57

Epicenter: -15.418 -172.005

Depth: 10 km

Debate for the seismic triggering in subduction zone

2009/09/29 17:48:10 UTC Magnitude: M_w 8.1

What/how about the interplate thrusting?

Beaven et al., (B), Nature 2010 GPS dislocation modelling tsunami-wave simulation

Lay et al. (L), Nature 2010 teleseismic waveform simulation

come to different conclusion about the seismic sources /stress transfer

Figure I | interpretations of the two Tongatrench earthquakes of 29 September 2009.

Coseismic motions recorded at daily GPS time series

- observations vs modellings from two seismic models

Our strategy: studying the nearby tsunami waveforms

The tsunami wave simulation is taken to,

- (1) examine the seismic models which are provided by Beaven et al and Lay et al.
- (2) verify which is the exact fault planes acting in the 2009 Samoa earthquake.
- (3) discuss the occurrence orders of the interplate thrust and the outerrise normal fault, which relates to different scenarios of tectonic suress transferring.

Tsunami-wave Simulation

Used package: COMCOT (Liu, P. L.-F. et al., 1998)

Governing Equation: shallow water equation (SWE) in spherical coordinates.

Numerical Scheme: An explicit Leap-frog Finite Differencing Method (FDM) is adopted in

COMCOT to solve Shallow Water Equations.

$$\frac{\partial P}{\partial t} + \frac{1}{R\cos\varphi} \frac{\partial}{\partial\psi} \left(\frac{P^{2}}{H}\right) + \frac{1}{R} \frac{\partial}{\partial\varphi} \left(\frac{PQ}{H}\right) + \frac{gH}{R\cos\varphi} \frac{\partial\zeta}{\partial\psi} - fQ + \tau_{x}H = 0 \qquad \qquad \tau_{x} = \frac{gn^{2}}{H^{\frac{10}{3}}} P\left(P^{2} + Q^{2}\right)^{\frac{1}{2}} + \frac{\partial}{\partial\varphi} \left(\frac{PQ}{H}\right) + \frac{1}{R} \frac{\partial}{\partial\varphi} \left(\frac{Q^{2}}{H}\right) + \frac{gH}{R} \frac{\partial\zeta}{\partial\varphi} + fQ + \tau_{y}H = 0 \qquad \qquad \tau_{y} = \frac{gn^{2}}{H^{\frac{10}{3}}} Q\left(P^{2} + Q^{2}\right)^{\frac{1}{2}}$$

$$\left| \frac{\partial \zeta}{\partial t} + \frac{1}{R \cos \varphi} \left[\frac{\partial P}{\partial \psi} + \frac{\partial}{\partial \varphi} (\cos \varphi Q) \right] \right| = -\frac{\partial h}{\partial t}$$

P, Q are the volume fluxes in X (East-West) and Y (North-South) direction, respectively

g: the gravitational acceleration

ζ: the free surface elevation in meters

H: the total water depth; including h (water depth), and ζ (wave height) meters

 ψ , φ : longitude and latitude of the Earth

n: Manning's relative roughness coefficient; anempirical constant depending on the fluid and materialof the ground

R: the radius of the Earth

f: the Coriolis force coefficient due to the rotation of the Earth

COMCOT website http://ceeserver.cee.cornell.edu/pll-group/comcot.htm

Tsunami-wave Simulation

Initial condition of tsunami waves

- the sea surface run-up corresponding to the seismic rupture converted from the half-space coseismic dislocation modeling

Wang et al, PSGRN/PSCMP, 2006 viscoelastic-gravitational dislocation theory

Parameters – fault plane solution

- hypocenter (longitude, latitude, and depth)
- Fault Geometry & rupture dimension
 (strike, dip and rake), (length, width, slip)
- Time of Rupture

$$u_{i} = \int_{\Sigma} \Delta u_{j} \left[\lambda \delta_{jk} \frac{\partial u_{i}^{j}}{\partial \xi_{k}} + \mu \left(\frac{\partial u_{i}^{j}}{\partial \xi_{k}} + \frac{\partial u_{i}^{i}}{\partial \xi_{j}} \right) \right] v_{k} dS$$

7

Observations of Tsunamis, DART

Deep-ocean Assessment and Reporting of Tsunami, NOAA/NTHMP

Two seismic models for tsunami simulation

Beaven et. al (2010)			Lay et. al (2010)			
Parameter\Event	ВТ	BN	LNI	LN2	LTITI	LT2T2
Longitude	-172.72°	-172.24°	**	**	-172.575°	-172.575°
Latitude	-15.94°	-15.54°	**	**	-15.75 $^{\circ}$ and -16.25 $^{\circ}$	-15.75° and -16.25°
Focal Depth	18	13	18	18	18 and 18	18 and 18
Strike/Dip/Rake	173°/16°/75°	351°/53°/-32°	144°/65°/*	324°/25°/*	185°/29°/90°	5°/61°/90°
Length/Width (km)	109/90	114/28	3/5/*	3/5/*	50/75	50/75
Slip (m)	4.1	8.6	**	**	4.6 and 4.7	4.6 and 4.7
Occurrence Time*(second)	0	105	70.5	70.5	119.5 and 160.5	119.5 and 160.5

^{*}This is referenced to the mainshock's origin time: 2009-09-29 17:46:59.5

- The two nodal planes of the normal-fault mechanism solutions are labeled as LN1 and LN2, same for the thrust events labels LT1T1 and LT2T2. LT2 fault plane parameter is conducted from the reported LT1.
- 2. In Lay et al (2011, personal communication), the two interplate thrusts exhibit the same geometry (strike, dip, rake, and magnitude) but take place separately at different hypocentral locations in a time gap of ~40 sec (the first and second thrusts occur 49 and 90 after the normal fault).

^{**}Each of the patches (subfaults) has varied centers, rakes and slips.

Spatial distribution of domination of the varied mechanisms - modelling from Beaven et al

Spatial distribution of domination of the varied mechanisms - modelling from Lay et al, LN1

Station 51425 - S1

Station 51426 – S2

Station 54401 - S3

Summery from the comparison btw the DART waveforms and simulations

- For Station 51425, the simulation results seems all not good enough to explain; we suspect the bathymetry between the epicenter to the station is too complex.
- Considering only the normal faulting:

The interesting thing is: N2 (Lay et al., 2010) dominantly affects the first phase of tsunami at station 51425.

Considering only the two interface thrusts:

The first phase of tsunami at station 51426 and 54401 are dominated by the two thrusts.

Considering all three major events:

For station 51426 and 54401, the result of simulation are much fitting with the observations.

From the results, it favors the geometry of the normal fault of dipping to northeast.